Delayed random walks: Investigating the interplay between delay and noise
نویسندگان
چکیده
A model for a 1–dimensional delayed random walk is developed by generalizing the Ehrenfest model of a discrete random walk evolving on a quadratic, or harmonic, potential to the case of non–zero delay. The Fokker–Planck equation derived from this delayed random walk (DRW) is identical to that obtained starting from the delayed Langevin equation, i.e. a first–order stochastic delay differential equation (SDDE). Thus this DRW and SDDE provide alternate, but complimentary ways for describing the interplay between noise and delay in the vicinity of a fixed point. The DRW representation lends itself to determinations of the joint probability function and, in particular, to the auto–correlation function for both the stationary and transient states. Thus the effects of delay are manisfested through experimentally measurable quantities such as the variance, correlation time, and the power spectrum. Our findings are illustrated through applications to the analysis of the fluctuations in the center of pressure that occur during quiet standing.
منابع مشابه
Delay estimation from noisy time series
We propose here a method to estimate a delay from a time series taking advantage of analysis of random walks with delay. This method is applicable to a time series coming out of a system which is or can be approximated as a linear feedback system with delay and noise. We successfully test the method with a time series generated by discrete Langevin equation with delay. Estimation of delay from ...
متن کاملOscillatory correlation of delayed random walks
We investigate analytically and numerically the statistical properties of a random walk model with delayed transition probability dependence (delayed random walk). The characteristic feature of such a model is the oscillatory behavior of its correlation function. We investigate a model whose transient and stationary oscillatory behavior is analytically tractable. The correspondence of the model...
متن کاملDelay stabilizes stochastic systems near a non-oscillatory instability
The work discovers a stochastic bifurcation in delayed systems in the presence of both delay and additive noise. To understand this phenomenon we present a stochastic center manifold method to compute a non-delayed stochastic order parameter equation for a scalar delayed system driven by additive uncorrelated noise. The derived order parameter equation includes additive and multiplicative white...
متن کاملEpl Draft Delay Stabilizes Stochastic Systems near an Non-oscillatory Insta- Bility
The work discovers a stochastic bifurcation in delayed systems in the presence of both delay and additive noise. To understand this phenomenon we present a stochastic center manifold method to compute a non-delayed stochastic order parameter equation for a scalar delayed system driven by additive uncorrelated noise. The derived order parameter equation includes additive and multiplicative white...
متن کاملNeural control on multiple time scales: Insights from human stick balancing
The time-delayed feedback control mechanisms of the nervous system are continuously subjected to the effects of uncontrolled random perturbations (herein referred to as noise). In this setting the statistical properties of the fluctuations in the controlled variable(s) can provide non-invasive insights into the nature of the underlying control mechanisms. We illustrate this concept through a st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008